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[1] Magnetically active times, e.g., Kp > 5, are notoriously difficult to predict, precisely
the times when such predictions are crucial to the space weather users. Taking advantage
of the routinely available solar wind measurements at Langrangian point (L1) and nowcast
Kps, Kp forecast models based on neural networks were developed with the focus on
improving the forecast for active times. To satisfy different needs and operational
constraints, three models were developed: (1) a model that inputs nowcast Kp and solar
wind parameters and predicts Kp 1 hour ahead; (2) a model with the same input as
model 1 and predicts Kp 4 hour ahead; and (3) a model that inputs only solar wind
parameters and predicts Kp 1 hour ahead (the exact prediction lead time depends on the
solar wind speed and the location of the solar wind monitor). Extensive evaluations of
these models and other major operational Kp forecast models show that while the new
models can predict Kps more accurately for all activities, the most dramatic improvements
occur for moderate and active times. Information dynamics analysis of Kp suggests
that geospace is more dominated by internal dynamics near solar minimum than near solar
maximum, when it is more directly driven by external inputs, namely solar wind and
interplanetary magnetic field (IMF).
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1. Introduction

[2] As technology advances, space weather prediction has
become increasingly important to our nation’s defense,
commerce, and research activities. For example, space
weather can affect communications, navigation systems,
satellite health, power grids, and space travel. Kp is one
of the most common indices used to indicate the severity of
the global magnetic disturbances in near-Earth space. Kp is
an index based on the average of weighted K indices at
13 ground magnetic field observatories. It is based on the
range of the magnetic field variation within 3 hour intervals
that is caused by phenomena other than the diurnal variation
and the long-term components of the storm time variations.
The values of the Kp range from 0 (very quiet) to 9 (very
disturbed) in 28 discrete steps, resulting in values of 0, 0+,
1�, 1, 1+, 2�, 2, 2+, . . .9. The Kp index was first
introduced by Bartels [1949] and has been published by
the Institut für Geophysik der Universität Göttingen since

1949. It was extended backward to 1932 in 1951. Thus the
name Kp has a German origin and is an acronym for
‘‘planetarische Kennziffer,’’ which simply means planetary
index. One Kp value is produced for each 3 hour interval of
universal time (UT) at 0–3, 3–6, 6–9, . . .21–24. The
previous month or older Kp values and other Kp related
information are available at GeoForschungsZentrum (GFZ),
Postdam, Germany Web site (http://www.gfz-potsdam.de/
pb2/pb23/GeoMag/niemegk/kp_index/) and several of its
mirror sites, including at the USA’s National Oceanographic
and Atmospheric Administration (NOAA) (ftp://ftp.ngdc.
noaa.gov/STP/GEOMAGNETIC_DATA/INDICES/
KP_AP/). A review of the Kp derivation method was given
by Rostoker [1972].
[3] The relatively long, uninterrupted Kp record since

1932 makes this index useful for studying solar wind-
magnetosphere interactions and space weather. There have
been many studies that show the correlations between Kp
and various parameters of the solar wind and interplanetary
magnetic field (IMF) [e.g., Papitashvili et al., 2000;
Crooker and Gringauz, 1993; Garrett et al., 1974]. Kp
has also been shown to correlate to many geospace
phenomena. For example, the location of the substorm
injection has been shown to have a Kp dependence [Mauk
and McIlwain, 1974]. The stretching of the field line, the
earthward boundary of the plasma sheet, and the ion
isotropy boundary have been shown to correlate well with
Kp [Wing and Newell, 2003; Newell et al., 1998; Sergeev et
al., 1993]. Kp also plays significant roles in space weather,
e.g., many satellite operators use Kp to estimate satellite
drag. Many magnetospheric and ionospheric models require
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Kp as an input parameter. For example, the Tsyganenko
[1989] magnetic field model, atmospheric density models
[e.g., Hedin, 1987], ring current–radiation belt models [e.g.,
Fok et al., 2001], conductivity models [e.g., Hardy et al.,
1987], and the Magnetospheric Specification Forecast Mod-
els (MSFM) (J. W. Freeman, The magnetospheric specifi-
cation and forecast model, unpublished manuscript, 1995,
available at http://hydra.rice.edu/freeman/ding/www/
msfm95/index.html) all require Kp as an input parameter.
Also, the recently developed Oval Variation, Assessment,
Tracking, Intensity, and Online Nowcasting (OVATION)
model can use Kp as an input parameter to determine the
equatorial boundary of the auroral oval [Newell et al.,
2002]. For space weather, what the models such as MSFM
and OVATION do, in effect, is to take Kp, which provides
qualitative alerts and use it to produce more quantitative
alerts, such as magnetospheric/ionospheric particle fluxes
and electromagnetic fields, auroral oval location and fluxes,
etc. As a result, precautionary measures could be taken to
avoid or reduce catastrophic damage to power grids and
satellites.
[4] As a global geomagnetic activity index, Kp has some

flaws, although other indices have their own difficulties.
The midlatitude locations (48�–63� magnetic latitude) of
the 13 midlatitude stations used to compute Kp render it
rather difficult for deducing the source(s) of its variations,
leading to some ambiguities in its interpretations. Therefore
as space physics advances, Kp will probably be supplanted
by a newer index or parameter that can indicate less
ambiguously the state of the magnetosphere. However, for
the reasons mentioned in the previous paragraph and
continuity of the space weather operations, for now and in
the near future, Kp is likely to continue to play some roles in
space physics and space weather.
[5] As mentioned, the official Kp is published with a few

weeks’ delay, which is usually more than adequate for space
physics research that analyzes old observations. Unfortu-
nately, this long delay makes it less useful for the space
weather operations. For that reason, Gehred et al. [1995]
developed a nowcast Kp algorithm, which takes real-time
data from several magnetometer stations, not necessarily the
same ones used for official Kp, and applies a similar method
employed by official Kp to derive Kp estimates. The
resulting Kp estimates do not always exactly match the
official Kps, but the advantage of this algorithm is that it
can produce estimated Kps in near real-time. This nowcast
Kp has been routinely produced by the United States Air
Force (USAF) 55th Space Weather Squadron and made
publicly available by NOAA through its Web site.
[6] More recently, Takahashi et al. [2001] developed a

more sophisticated Kp nowcast algorithm that calculates Kp
fairly accurately. The Kp estimates from this model will
soon be made publicly available at the Johns Hopkins
University Applied Physics Laboratory (JHU/APL) Web
site (http://sd-www.jhuapl.edu/UPOS/spaceweather.html).
[7] For the past few years, the Advanced Composition

Explorer (ACE) spacecraft, located upstream at Lagrangian
point (L1), has been reliably providing solar wind measure-
ments up to �30–60 min in advance of their arrival at
the near-Earth space environment. Therefore Kp forecast
models based on solar wind input could use ACE observa-
tions to make short-term forecasts. In fact, Costello [1997]

developed such a model based on an artificial neural
network (NN) algorithm. This model is now routinely
operational, and its predictions can be obtained at the
NOAA Web site (http://www.sec.noaa.gov/rpc/costello/
index.html). More recently, Boberg et al. [2000] developed
their own NN Kp model that also inputs solar wind.
[8] Moderate and high magnetic activities are notoriously

difficult to predict [Joselyn, 1995], precisely when predic-
tions become more crucial for space weather users. The
previous Kp models also exhibit this typical behavior
[e.g., Detman and Joselyn, 1999]. These models, which
were developed at the time when nowcast Kp models were
not yet operational, are driven solely by solar wind/IMF.
However, it can be reasonably expected that if the model
also inputs parameters that give the present and/or the
history of the state of the magnetosphere in addition to
the solar wind/IMF driver, the predictions would improve.
For example, Johnson and Wing [2004, 2005] show that
past Kps have strong linear and nonlinear correlations with
future Kps.
[9] This paper presents new Kp models that have signif-

icantly higher forecast accuracies than the previous Kp
operational models. In order to satisfy different needs and
operational constraints, three different models were devel-
oped: (1) a model that inputs nowcast Kp and solar wind
parameters and predicts Kp 1 hour ahead; (2) a model with
the same input as model 1 and predicts Kp 4 hours ahead;
and (3) a model that inputs only solar wind parameters and
predicts Kp 1 hour ahead. The 1 hour and 4 hour prediction
lead times are just rough estimates for solar wind monitor at
L1. Of course, the actual prediction lead times may vary,
depending on the solar wind V and the location of the solar
wind monitor.

2. Data Set

[10] One shortcoming of many early models is that they
were trained on a limited data set. For example, the Costello
NN was trained on 7 years of data from 1970, 1976, 1978,
1980, 1981, 1982, and 1989, but the limited availability of
the solar wind data from IMP-8 effectively reduces the
usable Kp data by more than 50% [e.g., see Wing et al.,
1995]. The amount of historical solar wind data has multi-
plied in the time since the Costello model was developed.
Because there are dynamical variations over the course of
the solar cycle, it is necessary to build a database that can
capture such variations to the extent possible. Therefore we
built a solar wind and Kp database that spans more than two
solar cycles, 1975–2001.
[11] We used the solar wind and IMF data from IMP-8

(1975–1999), Wind (1994–2000), and ACE (2000–2001).
The data are publicly available from NASACDAWeb (http://
cdaweb.gsfc.nasa.gov/). The IMP-8 plasma data are publicly
available at theMIT IMP-8Web site (ftp://space.mit.edu/pub/
plasma/imp/www/imp.html).
[12] The historical official Kp index is publicly available

at GFZ Postdam Web site (ftp://ftp.gfz-postdam.de/pub/
home/obs/kp-ap/). Although the historical Kp database is
virtually continuous and uninterrupted from 1975 to 2001,
the solar wind and IMF data have gaps, effectively reducing
the number of Kp data points that can be used for model
development.
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[13] The monthly average International Sunspot Number
is available at a NASAWeb site (http://science.nasa.gov/ssl/
pad/solar/sunspots.htm).

3. Method

[14] This study used an NN paradigm to construct the Kp
models. An NN is a mathematical model that attempts to
mimic the computation performed by the neurons in the
human brain. The advantage of this computational paradigm
is that it can be easily adapted to solve a wide range of
problems that involve linear and/or nonlinear mappings
between a set of input to a set of output. NNs have been
increasingly used to solve many problems in space physics,
particularly as predictors of time series data. In addition to
the two NN Kp prediction models mentioned above,
NNs have been used to predict relativistic electron flux
at geosynchronous orbit [Koons and Gorney, 1991], ener-
getic storm particle (ESP) events impinging on the Earth
[Vandegriff et al., 2005], geomagnetic storm [Wu and
Lundstedt, 1997], etc. NNs have also shown great promises
as signal/data classifiers. For example, an NN was used to
classify geospace physical boundaries in the plasma data
[Newell et al., 1990, 1991]. More recently, an NN was used
to classify high-frequency (HF) radar backscattered signals
[Wing et al., 2003].
[15] In this study we experimented with two types of

general NN architectures: (1) the standard multilayered
feedforward–backpropagation network [Rumelhart and
McClelland, 1987] and (2) the recurrent network in which
the outputs of the hidden nodes are fed back to inputs
[Gershenfeld, 1999; Fernandez et al., 1990; Lo and Bassu,
1999]. We compared the best models in each architecture
and found that there is no significant difference in their
performance. However, in general, the recurrent networks
can be trained more quickly than the feedforward–back-

propagation networks. Therefore our final models use
recurrent network architecture. In this study, all the NN
models use one hidden layer. The optimal number of hidden
nodes was empirically determined by systematically varying
the number of hidden nodes between 4 and 20, or higher if
needed. It turns out that most models reach the optimal
performances when the number of hidden nodes ranges
from 8 to 12. The NN only has one output node, which is
Kp. In addition, we developed a simple linear empirical
function that maps the NN output to observed Kp. The
function has the form of observed Kp = (a � NN Kp) + b,
where a and b are derived empirically from training data
sets. We note that this linear correction would only work if
NN Kp is already very good. It would not work (e.g., the
scatter would be too large) if the model output Kp was
terrible to begin with. The final predicted Kp is the output of
this function, which acts as a postprocessor for the NN.
[16] For the purpose of training and testing NNs, the solar

wind/IMF and Kp data set from 1975–2001 was randomly
selected to form two equal subsets: (1) a training set and
(2) a test set. To estimate the arrival time of the solar wind
and IMF in the Earth space environment, the solar wind/
IMF were propagated to Earth (X = 0) with the assumption
that the planar solar wind phase front is perpendicular to the
Sun-Earth line (ballistic propagation). Then, solar wind
density (n), and velocity (V) and IMF were hourly averaged
at 15 min time intervals, which is the time granularity of the
model outputs. In order to match the time granularity of Kp
(3 hours) to the model (15 min), the Kps are interpolated to
15 min resolution. This is done by time-tagging the Kp with
the center of the 3 hour interval, e.g., at 0130, 0430,
0730 UT, etc., and then linearly interpolating between those
points. For operational considerations, 15 min is preferred
over the traditional 3 hour time granularity. With 15 min
time granularity, the models can warn the users of the
impending change in the space weather more quickly. For
example, using 15 min time granularity, if a satellite at L1,
e.g., ACE, detected a sudden change in the solar wind that
would cause a huge increase in geomagnetic activity, the
model would be able to warn the users with a new and
higher Kp in the next 15 min, before the actual arrival of the
solar wind. On the other hand, using the traditional Kp
3 hour time resolution, the model would not be able to
broadcast the impending catastrophic condition for up to the
next 3 hours, which might be too late for many operations.
For practical purpose, the model 15 min Kp value can be
treated as the traditional 3 hour Kp value, as is presently
done in Costello model.
[17] In Figure 1, the solid line shows the distribution of

the interpolated 15 min resolution Kp data points that have
corresponding good simultaneous solar wind and IMF
observations. In other words, the solid line essentially
shows the total number of data points that can be used for
our study. The dashed line shows the Kp data in the test set.
Figure 1 basically shows that the test data set has roughly
the same distribution as the original full data set and hence
has no bias.

4. Previous Kp Models

[18] For the purpose of model comparisons, three existing
operational Kp prediction models are considered: (1) Cost-

Figure 1. Fifteen-minute interpolated Kp distribution in
the data set that spans over two solar cycles, 1975–2001.
The test data set (dashed line) has distribution similar to the
original full data set (solid line). The y-axis denotes the
number of events.
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ello NN, (2) NARMAX, (3) Boberg et al. NN. All these
models predict Kp roughly 1 hour ahead using a solar wind
monitor located at L1. In order to subject the models to the
same evaluation procedure and test data set, the Costello
NN and NARMAX models were ported to our computer.
We have no access to the Boberg et al. model and hence the
comparison with this model is more limited.

4.1. Costello NN Kp Model

[19] Presently, NOAA routinely provides real-time short-
term Kp forecasts from the most popular Kp prediction
model, the Costello NN Kp model [Costello, 1997] (http://
www.sec.noaa.gov/rpc/costello/index.html). This model
inputs ACE solar wind speed and IMF Bz and jBj and
predicts Kp roughly 1 hour ahead every 15 min. The actual
prediction lead time may vary, depending on the solar wind
V. In order to facilitate careful and systematic comparisons
with other models, this model was ported to our computer at
JHU/APL. Figure 2 shows the results of running the model
on the test data set shown in Figure 1. Figure 2 shows that
the model predictions are fairly accurate during quiet times
(Kp < 5) but are less accurate during moderate or active
times (Kp > 5), a typical problem for many models [Joselyn,
1995] and a feature that likely results from the low number
of high Kp events captured in the training data set [Costello,
1997]. This behavior is also consistent with the previous
evaluation of Costello model [Detman and Joselyn, 1999].
The correlation coefficient (r) between the forecast and
official Kp is 0.75.

4.2. NARMAX Kp Model

[20] We also ported a NARMAX Kp model that was
developed at the University of Sheffield, UK. NARMAX
is an acronym of Nonlinear Auto Regressive Moving
Average Models With Exogenous Inputs and is described

by Balikhin et al. [2001] and Boaghe et al. [2001]. The
model inputs solar wind speed and dynamic pressure, IMF
jBj, Bz, and optionally a previous Kp (Kp at time = t �
3 hours, where t is the solar wind arrival time on Earth). The
previous Kp could be its own previous prediction (feedback
mode) or a Kp estimate, i.e., a nowcast Kp. Over time, the
model performs more poorly if it inputs its own prediction
rather than nowcast Kp. Figure 3 shows the NARMAX Kp
performance using the same test data set and a nowcast Kp
(see section 5.1 for more discussion on nowcast Kp) as an
input parameter. From Figures 2 and 3, it can be seen that
NARMAX model predicts high Kps slightly better than the
Costello NN model, although the predictions of the former
have larger scatter. The correlation coefficient r = 0.77,
which is comparable to or just slightly higher than that of
the Costello model.

4.3. Boberg et al. NN Kp Model

[21] Boberg et al. [2000] developed a Kp forecast model
that is also based on an NN. Because we do not have access
to this model, we cannot evaluate this model using the same
procedure and test data set used for the other models
evaluated in this study. Instead, we rely on their own
evaluation of their model as presented in the work of
Boberg et al. [2000]. Fortunately, they also present a
predicted Kp versus official Kp plot (see Figure 4 in the
work of Boberg et al. [2000]), which can be compared with
similar plots in this paper, for example, Figures 2 and 3 with
the above-mentioned caveat. They report correlation coef-
ficient r = 0.77, which is roughly comparable to those
obtained by the NARMAX and Costello models. Like these
two models, their result indicates that their model does not
predict active times as well as quiet times. Their model
inputs solar wind V, n, and IMF Bz.

5. APL Kp Models

[22] We developed three different Kp models: (1) a model
that inputs nowcast Kp and solar wind parameters and
predicts Kp 1 hour ahead; (2) a model with the same input

Figure 2. The performance of the Costello NN model,
which predicts Kp 1 hour ahead. NOAA routinely provides
this model’s predictions. Official (Postdam) Kp is plotted on
the x-axis and the model prediction is plotted on the y-axis.
Perfect predictions would lie on the line with a slope of one.
The error bar indicates one standard deviation.

Figure 3. NARMAX 1 hour ahead Kp performance
shown in the same format as Figure 2.
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as model 1 and predicts Kp 4 hours ahead; and (3) a model
that inputs only solar wind parameters and predicts Kp
1 hour ahead.

5.1. Kp Model That Inputs Solar Wind and Nowcast
Kp and Predicts Kp 1 Hour Ahead (APL Model 1)

[23] We developed a model (hereinafter referred to as
APL model 1) that inputs solar wind jVxj, n, IMF jBj, Bz,
and nowcast Kp. Using solar wind measurements at L1,
APL model 1 predicts Kp up to approximately 1 hour ahead
(the actual prediction lead time may vary, depending on the
solar wind V). The nowcast Kp algorithm [e.g., Takahashi
et al., 2001] at time t can estimate Kp for (t � 1.5 hours).
For simplicity in building the model, the model inputs a Kp
estimate for time (t � 1.25 � 1.5 hours) or (t � 2.75 hours),
where t is the solar wind/IMF arrival time on Earth. This
assumes that most of the times the solar wind monitor at L1
would provide solar wind measurements <1.25 hours in
advance. Since the nowcast Kp algorithm has only recently
become available, for model development, the input Kp
comes from the official Kp record that spans over two solar
cycles. However, for model evaluation, the input Kp comes
from two sources: (1) the official Kp record and (2) the Kp
estimates from Takahashi et al. [2001] algorithm. Of course,
the official Kps are used to determine the accuracy of the
forecast Kps. The advantage of source 1 is that it covers a
large time interval, 1975–2001, but the disadvantage is that
the evaluation gives only a sense of the upper bound
performance. The advantage of source 2 is that it gives a
realistic evaluation for real-time operations, but since the
nowcast Kp algorithm was only recently developed, it has a
much more limited time coverage. However, the nowcast Kp

estimates have improved significantly, having correlation
coefficient between nowcast and official Kps of r > 0.9
[Takahashi et al., 2001]. Therefore it is expected that the
difference between sources 1 and 2 would be small. Figure 4
presents an example of the performance of Takahashi et al.
[2001]Kp estimates for days 70–120 in 1989 (fromFigure 13
of Takahashi et al. [2001]). The Kp estimates were calculated
from only three magnetometer stations: Fredericksburg,
Newport, and Sitka. The accuracy would improve with
additional magnetometers. The Takahashi et al. [2001] algo-
rithm can produce a nowcast Kp every 3 hours or at higher
time resolution, e.g., every 15 min.
[24] In order to show how well the model works, Figure 5g

shows the model prediction over a randomly selected 30 day
interval in the test data set. Figures 5a–5f display the time
shifted solar wind and IMF during this 30 day interval.
[25] The statistical model evaluation on the test data set

(from the official Kp record), as displayed in Figure 6a,
shows that model 1 is a significant improvement over
previous models. This can be seen by comparing Figure 6a
with Figures 2 and 3 of the present paper and with Figure 4
of Boberg et al. [2000]. Figure 6a shows that the model
predicts Kp well not only during quiet times but also during
active times. The correlation coefficient r = 0.92 is far
higher than those from the other models.
[26] Model 1 has also been evaluated using Takahashi et

al. [2001] nowcast Kp as an input parameter, instead of the
historical official Kp. For this evaluation, we processed
magnetometer data from three stations (Fredericksburg,
Newport, and Sitka) for the year 1998 to produce Kp
estimates at 15 min resolution. Figure 6b shows the results
of the evaluation with these Kp estimates, which are very
similar to Figure 6a. The scatter in Figure 6b is perhaps
slightly larger for high Kps, which may be attributed partly
to fewer data points and partly to inaccuracies in the
nowcast Kps. Overall, Figures 6a and 6b suggest that
running the model in real-time with Takahashi et al.
[2001] nowcast Kp as an input parameter would result in
performance that does not differ appreciably from that
obtained with 15 min interpolated official Kp.
[27] The superior performance of APL model 1 over the

previous models could perhaps be attributed to several
factors (the square brackets indicate the particular model(s)
that lack the corresponding attribute): (1) the model was
trained with much larger data set spanning over two solar
cycles [Costello, NARMAX]; (2) the model inputs not only
solar windV, but also n (hence dynamic pressure) [Costello];
and (3) the model inputs nowcast Kp, which is highly
correlated with near-future Kp (see section 6) [Costello,
Boberg et al.].
[28] For operational consideration, the Takahashi et al.

[2001] model will soon be operational at JHU/APL and its
nowcast Kps will be made publicly accessible through the
Web site given above. Alternatively, APL model 1 can use
the nowcast Kps provided at the NOAA Web site given
above. The real-time ACE measurements are already
routinely publicly accessible at the same NOAA Web site.

5.2. Kp Model That Inputs Solar Wind and Nowcast
Kp and Predicts Kp 4 Hours Ahead (APL Model 2)

[29] The second model (hereinafter referred to as APL
model 2) inputs the same parameters as APL model 1 but

Figure 4. Performance of Takahashi et al. [2001] nowcast
Kp estimate algorithm for days 70–120 in 1989, a 50-day
period that includes an extremely strong magnetic storm.
The x-axis displays the official (Postdam) Kp. The
magnetometer data for Kp estimates come from only
three stations: Fredericksburg, Newport, and Sitka (from
Figure 13 of Takahashi et al. [2001]).
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predicts Kp 4 hours ahead based on solar wind measure-
ments at L1. Thus unlike APL model 1, this model predicts
Kp without knowing the entire history of the solar wind
parameter leading up to the forecast time. Specifically, a
satellite at L1 provides solar wind parameters only approx-

imately 1 hour ahead, but the model predicts Kp 4 hours
ahead. Figure 5h shows the model Kp forecasts over a
30-day interval, which was randomly selected. Figure 7a
presents the statistical model performance on the test data
set (with input Kp obtained from the official Kp record).

Figure 5. Example of the APL models Kp forecasts on a randomly selected 30 day period in the test
data set. (a)–(f) IMF Bx, By, Bz, solar wind density, velocity, and dynamic pressure, respectively. (g)–(i)
official Kp (black) and forecast Kp (red [or gray in the black and white version]) for APL models 1, 2,
and 3, respectively. The solar wind and IMF have been hourly averaged and time shifted.
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Figure 7b shows the evaluation using the Takahashi et al.
[2001] Kp estimate as an input parameter for the year 1998.
As expected, the longer prediction lead time results in the
reduction in performance. The reduction in performance is
manifested in the form of larger scatter compared with that of
APL model 1. However, as shown in Figure 7, despite
forecasting further ahead in time, the 4 hours ahead Kp
forecasts for active times (Kp > 5) are more accurate than the
1 hour ahead forecasts from the Costello, Boberg et al., and
NARMAX models. The correlation coefficient, r = 0.79, is
slightly higher than that of the other 1 hour ahead Kp
forecast models (Costello, NARMAX, and Boberg et al.).
[30] Consistent with the APL model 1 evaluation, the

APL model 2 evaluation also demonstrates that running the
model in real time with the Takahashi et al. [2001] nowcast
Kp as an input parameter produces results that are almost as

good as those obtained using interpolated official Kp (test
data set).

5.3. Kp Model That Inputs Only Solar Wind and
Predicts Kp 1 Hour Ahead (APL Model 3)

[31] There may be times (locations) when (where)
nowcast Kps are simply not available or reliable. For this
reason, we developed a model (hereinafter referred to as
APL model 3) that is driven solely by solar wind and IMF.
This model inputs solar wind n and jVxj and IMF jBj and
Bz. Using solar wind measurements at L1, e.g., ACE, APL
model 3 outputs 1 hour ahead Kp forecast. Figure 5i shows

Figure 6. APL NN 1 hour ahead Kp (APL model 1)
performance shown in the same format as in Figure 2. This
model inputs nowcast Kp from (a) the test data set from the
official Kp record 1975–2001 and (b) the Takahashi et al.
[2001] Kp estimates for 1998. The model is significantly
better than Costello NN (Figure 2) and NARMAX
(Figure 3).

Figure 7. APL Kp NN 4 hours ahead (APL model 2) Kp
performance shown in the same format as in Figure 2.
(a) The input Kp comes from the test data set (official Kp
record), and (b) the input Kp comes from the Takahashi et
al. [2001] Kp estimate for 1998. Note that the performance
for active times, Kp > 5, is better than that of the Costello
and NARMAX models, even though its forecast range is
4 hours ahead, whereas those two models predict only
1 hour ahead.
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the model outputs over a 30-day period. Figure 8 presents
the model performance using the same test data set used
throughout this study, except for the Boberg et al. model. It
has a correlation coefficient of r = 0.84. Figure 8 shows that
without the benefit of the nowcast Kp, the accuracy is lower.
Since this model inputs only solar wind and IMF parameters
and no nowcast Kp, it can be most directly compared with
the Costello and Boberg et al. models, which do not input
nowcast Kp either. The comparisons show that despite
having the same kind of inputs, APL model 3 still outper-
forms these two models, albeit the performance improve-
ment is less than for APL model 1. APL model 3 also
outperforms the NARMAX model, despite the latter having
the advantage of nowcast Kp as an input parameter.

6. Kp (Magnetospheric) Predictability as a
Function of Solar Cycle

[32] Papitashvili et al. [2000] show that there is a solar
cycle variation in the average Kp. The accuracies of
nowcast Kps calculated from ground magnetometer data
exhibit no discernable correlation with sunspot numbers
[Takahashi et al., 2001]. It would be interesting to deter-
mine whether the accuracies of the Kp (a proxy for the state
of the magnetosphere) forecast based partly or entirely on
solar wind/IMF have solar cycle dependence. In order to
do this, we calculated the skill scores for the Costello
model predictions over two solar cycles, 1975–1999, using
IMP-8 solar wind data. NOAA issues alerts when Kp is
expected to exceed certain threshold, e.g., 4, 5, 6, etc.
Figure 9 plots True Skill Statistics (TSS) and Gilbert Score
(GS) for these Kp thresholds [Detman and Joselyn, 1999].
In both of these scoring systems, a random prediction = 0
and a perfect prediction = 1. The normalized monthly
average International Sunspot Number is plotted at the

bottom of Figures 9c–9e. In the present paper, in order to
improve the visualization, the sunspot numbers are not
normalized to one. Examination of the skill scores and the
sunspot numbers in Figures 9c–9e reveals that the Costello
model predicts Kp more accurately near solar maximum
than minimum.
[33] It is not clear from Figure 9 whether this solar cycle

variation is physically significant or whether it results from
having a limited training set. Therefore we calculated the
same skill scores for different models using a different and
larger solar wind data set, namely IMP-8 (1975–1994),
Wind (1994–2000), and ACE (2000–2001) solar wind
data. An example is shown in Figure 10, which shows the
skill scores for APL model 3 in a format similar to Figure 9.
This model, which was trained with a much larger data set
spanning over two solar cycles, inputs only solar wind/IMF
as in Costello model. Training with larger data sets helps
improve the accuracy of the predictions and significantly
reduces the solar cycle variation, but it does not appear to
completely eliminate the solar cycle effect. In Figures 10a–
10d, the skill scores appear to exhibit mild solar cycle
variations, but the maxima and minima of the sunspot
number do not always appear at the same time as those of
the skill scores. The maxima of the skill scores often appear
during the declining phase of the solar maximum. Figures 9
and 10 would suggest that at least a component of the solar
cycle variation might result from a more fundamental way
in which solar wind interacts with the geospace.
[34] Recently, we applied a cumulant-based method to

analyze the statistical informational dynamics of Kp time
series and found that there is a stronger nonlinear relation-
ship between past Kp and future Kp around solar minimum
than around maximum [Johnson and Wing, 2004, 2005].
This relationship is depicted in Figure 11, which plots the
normalized linear (SL) and nonlinear (SNL) significance as
a function of time delay, t, in hours for Kp data for two
solar minima (Figures 11a and 11c) and two solar maxima
(Figures 11b and 11d). For time T, SL is roughly proportional
to the linear correlation between Kp(T) and Kp(T � t),
whereas SNL gives a measure of the nonlinear correlations.
The details of the calculations are given by Johnson and
Wing [2004, 2005]. The figure shows that while the linear
response is roughly the same around solar minimum and
maximum, the nonlinear response is stronger for solar
minimum than maximum, with a peak around t � 40 hours.
[35] It turns out that the nonlinear response (SNL) anti-

correlates with sunspot number in every solar cycle since the
Kp index has been recorded, 1932 to the present (2003).
Figure 12 shows clearly this anticorrelation in two
different ways: Figure 12a shows the maximum SNL, and
Figures 12b–12c show the integrated SNL for >95% and
>99.5% confidence, respectively, for years 1932–2003.
Figure 12 was obtained from the yearly SNL curves such
as the ones shown in Figure 11. For easy reference, the
normalized sunspot number is plotted as lighter (gray) lines at
the bottom of each panel. In Figure 12a, the probability that
a linear model could produce significance of 10 is 1:1023. The
integrated significance sums over all correlation times up to
t = 200 hours and may give a better indicator of the presence
of nonlinearity over long times than just the maximum
value. It is only appropriate to compare the relative value
of the integrated significance within each plot. The typical

Figure 8. APL Kp NN 1 hour ahead (APL model 3) Kp
performance shown in the same format as in Figure 2. This
model inputs only solar wind and IMF and no nowcast Kp.
This can be directly compared with the Costello NN model
results shown in Figure 2, since both models input only
solar wind and IMF parameters and no nowcast Kp.
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correlation time for high nonlinear significance events lies
around 40 hours (see also Johnson and Wing [2004, 2005]).
The timescale over which the nonlinear significance is
appreciable is on the order of a week. These timescales are
similar to timescales associated with ring current
relaxation (hours to days) and storm relaxation (1 week).
[36] Taken together, these nonlinearities and the skill

scores suggest that around solar minimum, the magneto-

sphere is dominated more by internal dynamics than it is
around solar maximum, when it is more directly driven by
the external inputs, namely solar wind and IMF. The
presence of the internal dynamics would complicate the
Kp predictions that rely entirely or partly on the external
drivers.
[37] The statistical information dynamical analysis of Kp

shown in Figure 11 indicates that Kp highly correlates with

Figure 9. The Costello model predicts Kp more accurately near solar maximum than near solar
minimum for Kp > 3. (a)–(e) Skill scores for the Costello NN Kp model over two solar cycles for Kp =
2–6, respectively. The black solid line = True Skill Statistic (TSS) and the dashed line = Gilbert score
(GS). The lighter (gray) solid lines at the bottom of Figures 9c–9e indicate the normalized monthly
average International Sunspot Number, which exhibits trends similar to the skill scores.
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the past Kps within the last few hours, linearly and non-
linearly (the Kp has been interpolated to 15 min resolution).
Therefore including the nowcast Kp can improve the 1 hour
ahead Kp forecasting. However, both the linear and nonlin-
ear correlations drop off sharply with increasing t, which
contribute to the rapid decrease in the performances of APL
model 2 compared with APL model 1.

[38] Near solar minimum, as shown in Figure 11, there
are significant nonlinear correlations between Kp and past
Kps that may be attributed to internal dynamics. Thus in
theory the nowcast and all past Kps may help improve the
Kp forecasts, since they contain some information that
pertains to the internal dynamics, including persistence.
This information is not available in the solar wind/IMF.

Figure 10. Skill scores over two solar cycles for a Kp model that inputs solar wind parameters and
predicts Kp 1 hour ahead (APL model 3). (a)–(e) Skill scores for APL model 3 for Kp = 2–6,
respectively. The black solid line = True Skill Statistic (TSS) and the dashed line = Gilbert score (GS).
The lighter (gray) solid lines at the bottom of Figures 10a–10d plot the normalized monthly average
International Sunspot Number. In Figures 10a–10d, while the skill scores are higher than those for the
Costello model, they still exhibit yearly variations that roughly follow the same general pattern as the
sunspot number.
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The recurrent NN has some capacity to memorize the past
Kps (for APL models 1 and 2), but it is doubtful that it can
effectively capture the complex correlations or dynamics
beyond the last few hours (the nonlinear correlations can
extend beyond several hours).

7. Discussion and Summary

[39] In order to satisfy different needs and operational
constraints, we developed three types of Kp forecast
models, two of which require nowcast Kp as an input
parameter. The focus of the model development was
improving the forecasts for magnetically moderate and
disturbed times, which are notoriously difficult to predict
[e.g., Joselyn, 1995]. The three models are (1) APL model 1
that inputs nowcast Kp and solar wind parameters and
predicts Kp 1 hour ahead; (2) APL model 2 that has the
same input as APL model 1 and predicts Kp 4 hours ahead;
and (3) APL model 3 that inputs only solar wind parameters
and predicts Kp 1 hour ahead. The 1 and 4 hour prediction
lead times are just rough estimates for a solar wind monitor
at L1. The actual prediction lead times may vary, depending

on the solar wind V and the location of the solar wind
monitor. All these models are based on NNs and were
developed with 27 years of data, 1975–2001.
[40] Our extensive evaluation based on data spanning

more than two solar cycles shows that (1) our models give
significantly more accurate predictions than previous
models, with the most dramatic improvements occurring
during moderate and active times, Kp > 4, and (2) Kp is
slightly more predictable near solar maximum than it is near
solar minimum. Information dynamics analysis of Kp
suggests that the magnetosphere is more externally driven
near solar maximum (or the declining phase of the solar
maximum) than near solar minimum. Around solar mini-
mum, the internal dynamics such as loading and unloading
of the energy in the magnetotail, ring current decays, storm
relaxation, etc., may play a more important role in the
magnetospheric dynamics and may introduce some diffi-
culties to Kp models that rely entirely or partly on solar
wind parameters.
[41] The performances of various models can be summa-

rized in Figure 13, which plots the TSS scores of the Kp
threshold [Detman and Joselyn, 1999]. Figure 14 summa-

Figure 11. Normalized linear (SL) and nonlinear (SNL) significance as a function of time delay t, for
Kp data from near (a) solar minimum 1975, (b) solar maximum 1982, (c) solar minimum 1987, and
(d) solar maximum 1992. SL is proportional to the linear correlation coefficient between Kp(T) and
Kp(T � t), whereas SNL gives a measure of the nonlinear correlation. SL = solid line and SNL = dashed
line. SL drops off quickly with increasing t for both solar maxima and minima. Near solar minima, there
is a strong nonlinear response with a peak around t = 40 hours, whereas near solar maxima, SNL tapers
off quickly.
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rizes the correlation coefficients for all the models, which is
fairly consistent with the skill scores. For comparisons
with other published model evaluations, the correlation
coefficient r is calculated here for all Kp ranges. Therefore
Figure 14 understates the dramatic improvements in the
active times (Kp > 5) forecast range achieved by APL Kp
models. We also note that r, by itself, does not indicate how
well the model performs. For example, it would be possible
to have a model that systematically and consistently under-
predicts Kp but does so with little scatter and high r. Thus
comprehensive model evaluations should include scatter-
plots (e.g., Figures 2, 3, 6, 7, 8), skill scores, and r.
[42] The advantage of having nowcast Kp can be seen, at

least qualitatively, by comparing model 1 and model 3, e.g.,
comparing Figures 6 and 8. The advantage of larger data
sets plus inclusion of solar wind density can be seen by
comparing APL model 3 with the Costello model, e.g.,
Figures 2 versus 8. However, the quantifications of these
effects would require substantially more work and should be
addressed in the future work.
[43] For operational consideration, nowcast Kps, based

on an Air Force algorithm, are now routinely made publicly
available by NOAA. Furthermore, Takahashi et al. [2001]
have developed a very accurate nowcast Kp algorithm.
These nowcast Kps will soon be publicly available at a

Figure 12. The nonlinear response anticorrelates with the sunspot number in every solar cycle from the
first Kp record to present, 1932–2003. (a) The black line shows the maximum nonlinear significance
(SNL); (b) and (c) the black line shows the integrated SNL at >95% confidence and at >99.5%
confidence, respectively. The lighter (gray) lines at the bottom in Figures 12a–12c show the normalized
sunspot number.

Figure 13. APL Kp models outperform the existing Kp
forecast models. True Skill Statistic (TSS) as a function of
Kp threshold for APL model 1 (red), APL model 2 (blue),
APL model 3 (purple), the NARMAX model (green), the
Costello model (cyan).
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JHU/APLWeb site once the live magnetometer data streams
become available. Our study demonstrates that these now-
cast Kps can be used to improve the forecast Kps. Thus
APL models 1 and 2 can be used whenever nowcasts Kps
are available, while APL model 3 can be used when only
solar wind/IMF measurements are available.
[44] For practical and operational considerations, the APL

models predict a new Kp every 15 min instead of every
3 hours. The higher time resolution was chosen to enable
the models to warn users of the impending change in space
weather in a more timely manner. For example, using 15 min
time granularity, if ACE detected a sudden change in the
solar wind that would cause a huge increase in geomagnetic
activity, the model would be able to warn the users in the
next 15 min, before the actual arrival of the solar wind,
whereas using the traditional Kp 3 hour time granularity, the
model would not be able to do so. All model evaluations
presented so far are done by comparing the model output
Kp at 15 min granularity with the 15 min interpolated
historical official Kp. This is deemed more accurate than
the comparisons with the historical 3 hour Kp because the
magnetospheric state changes in a continuous manner rather
than in 3 hour step function. However, we have also
statistically evaluated the model output Kp against the
traditional 3 hour official Kp in a similar manner as in
Figures 6–8, 13, and 14. The results do not show appre-
ciable differences with those evaluations against the inter-
polated 15 min Kp presented above. Figure 15 shows two
examples: for APL model 2 (Figure 15a) and for APL
model 3 (Figure 15b). Thus for practical purpose, the
model output 15 min Kp could be treated as the traditional
3 hour Kp. Evaluated in this manner, APL Kp models still
outperform the existing Kp models.
[45] The APL Kp models can provide a short-term

forecast, up to a few hours ahead using solar wind/IMF

measurements at L1. These short-term forecasts would be
valuable for space weather users, but for many applications
longer-term forecasts are more desirable. We would like to
note that there are several heliospheric models that are
currently operational and/or under various stages of devel-
opment. These models input solar observations and predict
solar wind/IMF days in advance, e.g., the Hakamada-
Akasofu-Fry (HAF) code [Fry et al., 2001; Hakamada
and Akasofu, 1982] and the Wang-Sheeley model [Wang
and Sheely, 1995; Arge and Pizzo, 2000]. Also, the NASA
Living With a Star (LWS) roadmap calls for the launch of a
multispacecraft space weather network (Solar Dynamics
Observatory and Sentinels) with a main goal of providing
the solar wind parameters with longer lead time (http://
lws.gsfc.nasa.gov). Thus the APL Kp model 3, which is
driven solely by solar wind/IMF, can be linked with these
models/products to provide longer-term forecasts.
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models.
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format as Figures 7 and 8 for (a) APL model 2 and (b) APL
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